
Improving distributed traffic generation performance

by using IMUNES network emulator

Valter Vasić, Mirko Sužnjević, Miljenko Mikuc, Maja Matijašević
University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

{valter.vasic, mirko.suznjevic, miljenko.mikuc, maja.matijasevic}@fer.hr

Abstract—In this paper we present improvements of our
software architecture for User Behaviour Based Network Traffic
Generation (UrBBan-Gen). It consists of four modules Service
repository, Control function and user interface, Behaviour process,
and Traffic generation process. Improvements are performed on
the traffic generation process, specifically on the virtualization
section of UrBBaN-Gen through integration of the Distributed
Internet Traffic Generator (D-ITG) which we use as a module
for traffic generation with network simulator and emulator
IMUNES. In this way we achieve two goals: 1) better scalability
of the traffic generation and 2) possibility for testing of various
network scenarios in simulated networks under realistic loads.

1. INTRODUCTION

In recent years Massively Multiplayer Online Role-Playing

Games (MMORPGs) have become a growing phenomenon

which attracts millions of players. As the number of games

and users grows, so does the amount of traffic which needs

to traverse the network. According to the Cisco Visual Net-

working Index [1], gaming traffic will grow with a compound

annual growth rate of 43% in a period of 2010–2015, a

second largest growth after the video category. These games

generate traffic that is very demanding in terms of Quality of

Service (QoS) due to the real-time nature of virtual worlds

of networked games.

In order to achieve a satisfying level of QoS for a

MMORPG on a network level, a network provider must

primarily ensure that the latency and jitter values are very

low, and that crucial data is delivered in a timely manner.

The network providing connectivity for these games needs to

be well designed and tested. Generating realistic traffic loads

is one of the most important tasks in network testing.

In our previous work [2] we have developed a software

architecture for distributed traffic generation based on player

behaviour named User Behaviour Based Network Traffic

Generator (UrBBaN-Gen). The goal of UrBBaN-Gen is to

generate the traffic of hundreds and thousands of players.

To achieve this we employed two scalability techniques: 1)

virtualization and 2) expandability (additional PCs can simply

be added into the traffic generation process).

In this paper we further improve UrBBan-Gen in the aspect

of scalability. We replace previous virtualization technology

(Linux Containers - LXC) through integration of UrBBan-

Gen with network simulator and emulator IMUNES [3][4].

We demonstrate the gains through several measurements

focusing on generated packed load and bandwidth load, and

measuring saturation of the CPU and RAM usage of the

PC participating in the traffic generation. This integration

also enables testing traffic workloads on realistic network

topologies, thus enabling more precise and detailed tests

which can be used to identify problems and bottlenecks in

the network.

The remainder of the paper is organized as follows: in

section 2 we present the related work in the area of behaviour

based traffic generation with emphasis on networked games

and virtualization techniques, in section 3 we describe the

UrBBaN-Gen, in section 4 we explain improvements of the

emulated environment, section 5 contains the testing method-

ology applied, section 6 the results of the measurements, and

we conclude the paper in section 7.

2. RELATED WORK

Network traffic generators (TGs) may be categorized based

on how they derive the traffic patterns into three groups: 1)

TGs based on replay of previously captured traffic, 2) TGs

emulating the properties of previously captured traffic based

on statistical analysis of the traces, and 3) source based TGs,

which emulate the behaviour of the traffic source (user and

application). In this paper, we focus on source based traffic

generators.

One of the first source level traffic generators was Scalable

URL Reference Generator (SURGE) [5]. SURGE creates

a realistic web workload that mimics a set of real users

accessing a server. Surge defines a concept of user equivalent

(UE) as a process in an endless loop that alternates between

making requests for web files, and being idle. The statistical

properties of web reference streams that are needed by each

UE are described by parameters such as file sizes, request

sizes, popularity, embedded references, temporal locality,

OFF times.

GenSyn is a synthetic traffic generator implemented in Java

based on user behaviour [6]. The stochastic user behaviour is

described by state diagrams. The stochastic user behaviour

model controls the creation of TCP connections and UDP

streams through interface modules that links the GenSyn

process to the underlying Internet protocol stack on the

workstation.

While there are several models of network traffic of

MMORPGs described in literature [7], [8], [9] there are very

few implementations of models in traffic generators. Shin et

al. [10] propose a novel method for modelling the network

traffic of games. They analyse packet size and inter-arrival

times of World of Warcraft (WoW) and first person shooter

game Left 4 Dead (L4D) by Turtle Rock Studios. Authors

propose a transformational scheme in order to simplify the

shape of the traffic so it can be mapped to an analytical

model. They implement their model in a online game traffic

generator [11]. Authors claim that their traffic model is based

on player behaviour, but this behaviour is only referred to

as high erraticism of the traffic. On the other hand, traffic

generation process used in UrBBaN-Gen [2] is fully defined

by application level user behaviour.

There are a couple of integrated network topology em-

ulator solutions that use kernel based virtualization. The

first emulator to use this kind of technology was IMUNES

[3], [4]. IMUNES runs natively on FreeBSD, and it can

also run in virtual machine software such as VMware. The

CORE network emulator was created as an offspring of

IMUNES [12]. It is fully based on an older IMUNES release

with improvements regarding mobility. It has been ported

to work on Linux distributions and no longer works on the

newer FreeBSD releases. A similar network emulator is also

mininet [13] which provides a much simpler GUI and also

runs on Linux. IMUNES was chosen because of stability,

performance, user-friendliness and GUI, advanced scripting

options, and capabilities for testbed automation.

3. URBBAN-GEN

The goal of UrBBaN-Gen is to generate realistic traffic of

a MMORPG, as a complex IP service, on both client and

server side and based on user behaviour. This is achieved

through implementing a source based traffic model based

on player behaviour on the application level defined through

action categories [14] and traffic models of each for each

action category [15]. While UrBBaN-Gen has been developed

to generate WoW network traffic, functional architecture and

implementation are service independent so new services may

be added through new user behaviour and traffic models.

MMORPGs are a good case study as they involve large

number of users with diverse application level behaviours

which significantly affect network traffic characteristics [16].

Figure 1 shows the traffic generation part of UrBBaN-Gen.

The higher layers perform simulation of the player behaviour

and control the traffic generation process.

For the functional elements of Traffic sender and Traffic

receiver we used the Distributed Internet Traffic Generator

(D-ITG), an open source tool developed at Universita’ degli

Studi di Napoli ”Federico II” (Italy). D-ITG is a tool for

network traffic generation which offers a choice of various

transport and application layer protocols. D-ITGs distributed

architecture includes sender, receiver, logger, and manager

components. More details regarding D-ITG can be found in

several publications of its authors [17], [18], [19].

4. IMPROVEMENTS OF EMULATED ENVIRONMENT

In this paper we focus on the Emulated environment of

the traffic generation process as shown in Figure 1. This

component has been proven to be the bottleneck when the

number of senders/receivers has been increased over 100.

We replace the existing LXC containers implementation with

FreeBSD jails, a kernel based virtualization system used

in IMUNES. Also the network configuration is done in an

optimized environment (FreeBSD kernel) by using netgraph

kernel modules.

4.1 IMUNES fundamentals

IMUNES (Integrated Multiprotocol Network Emula-

tor/Simulator) is a lightweight kernel level network emulator

[3][4]. Three main tools inside the standard FreeBSD kernel

are used to provide the emulating environment:

1) FreeBSD jails - a lightweight virtualization solution that

enables different jails to share system resources with

minimum overhead. It is based on separating system

resources as a means of providing a higher level of

security without affecting system performance [20]. The

main advantage of jails is that they run on the same ker-

nel and enable full binary compatibility with FreeBSD

executables. Most Unix and Linux applications can be

run without recompilation. If recompiling is needed the

changes to the original source are minimal. Each jail

has its own:

• directory subtree - root file system,

• hostname,

• IP address - crucial for achieving network emula-

tion and communication between emulated nodes.

A jail has a complete instance of the network stack.

This is enabled by the clonable network stack that

is described in [4].

2) Netgraph kernel modules - used for emulating node

network interfaces and linking virtual nodes in the

simulation. Netgraph also provides the implementation

of lower layer (data link layer) network equipment such

as hubs and switches [21].

3) ZFS file system - Transactional file system developed

by Sun Microsystems. ZFS uses the concept of storage

pools to manage physical storage. ZFS has the ability

to create snapshots, read-only copies of the file system

state. Snapshots can be cloned and replicated. This

makes them suitable for creating initial copies of root

file systems used by virtual nodes during simulation

[22].

The main advantage of IMUNES is the low system foot-

print that topologies generate. Traffic manipulation is also

done efficiently in the FreeBSD kernel, where packets are

transferred by passing references rather than copied as they

cross the emulated network environment. The system archi-

tecture enables fast experiment instantiation and termination.

Fig. 1. Architecture of UrBBaN-Gen functionality [2]

IMUNES is suitable for executing multiple experiments at

once, and it also facilitates creation of large topologies with

canvas support [23].

4.2 IMUNES nodes

The IMUNES system has a set of nodes that can be

instantiated and preconfigured when a simulation is started.

Nodes can be seen in the left sidebar inside the IMUNES GUI

[23]. These nodes can be grouped in the following groups:

• Physical layer nodes - Used for interconnecting network

nodes and creating the topology. The first node in this

category are links that create all the paths between net-

work nodes. Links can be configured to emulate network

problems and properties such as bandwidth, delay, bit-

error-rate (BER) and duplicate packets. There is also the

physical interface node that enables the connection of all

the IMUNES nodes to the external network by assigning

a NIC (Network Interface Card) to the physical interface

node. By using this node IMUNES can route real-world

traffic and manipulate traffic with link settings. Both

physical nodes are part of the netgraph suite (ng pipe,

ng ether).

• Layer 1/2 nodes - Emulate hub and layer 2 switch

nodes. Both implemented as netgraph nodes (ng hub,

ng bridge). Used for creating more complex local area

connections. The main difference is that the hub node,

when it receives a packet, forwards it to all the other

interfaces, whereas the switch node forwards packets

based on link layer data.

• Layer 3 nodes - Include nodes that operate from the IP

layer up. These nodes are in-fact jails with their own

set of processes and file systems. IMUNES allows us to

create three types of jailed nodes:

– PC - An empty jail that is created, by default, with-

out any processes running. The PC is an example of

a persistent jail [20]. This node is a base for creating

all other layer 3 nodes.

– Host - Jail used for running services. By default it

has the inetd and rpcbind processes running.

– Router - This node is used for emulating real

routers. It can run the Quagga routing protocol suite

[24], or simply be a static router that needs to be

manually configured. The Quagga routing suite of-

fers support for most widely used routing protocols:

RIP, RIPng, OSPFv2, OSPFv3, BGP, etc. IMUNES

is setup to automatically configure RIP(ng) and

OSPFv2/3. If needed, other routing protocols and

suites can be manually configured to run on the

router node.

4.3 D-ITG in IMUNES

The main issue regarding replacing LXCs with IMUNES

is that D-ITG does not have innate support for BSD operating

systems (OSs) as it is designed for Windows and Linux OSs.

The latest D-ITG version 2.8.0-rc1 would not compile by

default on FreeBSD.

After all errors were solved and D-ITG was successfully

recompiled on a FreeBSD system the process of integration

in IMUNES is fairly simple. The D-ITG executables are

inserted into the ZFS system snapshot which is replicated

across nodes in the IMUNES simulation. In this way, each

node in a simulation has access to D-ITG binaries.

5. SCALABILITY TESTING METHODOLOGY

Two testbeds were created: 1) Linux (LXC) testbed and 2)

IMUNES testbed. The testing was performed on commodity

hardware PC-s (Intel Core i3-2120 3.3 Ghz with 4GB of

RAM). For both testbeds the same hardware was used.

Linux testbed consisted of two PCs running Ubuntu 11.10

operating system. One PC hosted all LXCs hosting D-ITG

senders connected to a Linux bridge, while other PC hosted

D-ITG receivers. The number of instances of LXCs varied

depending on the experiment. The IMUNES testbed was also

set on 2 PCs, one for running the IMUNES system with all D-

ITG sender nodes in an emulated environment and the other

that acted as a receiver. The D-ITG receiver node was run on

another PC so that it would not interfere with the testbed and

testing results.

Two tests were performed on both testbeds:

1) Testing with fixed pps (packets per second) rate and

fixed packet size, while changing the number of sender

nodes.

2) Testing with fixed pps rate and fixed number of nodes,

while changing the packet size.

For each test iteration the CPU load and packet loss were

noted.

The third test was run only on the IMUNES testbed on top

of VMware. Through this test we inspected how the packet

rate created by a single sender to a single receiver varies in

the IMUNES emulated network.

6. RESULTS

The IMUNES testbed was, in overall, more stable than

the Linux testbed. The reason is due to jails started inside

IMUNES were more lightweight in comparison to the Linux

containers used for the Linux testbed.

The first test was done as follows. The packet rate was fixed

to 1000 pps and the packet size was 64 bytes. The number of

nodes was gradually increased from 10 nodes to 180 nodes.

IMUNES had a much smaller packet loss while the Linux

testbed started losing packets much more quickly. The results

can be seen in Figure 2.

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180

P
a

c
k
e

t
lo

s
s
 (

%
)

Number of sender nodes

IMUNES
Linux

Fig. 2. Packet loss with respect to the number of sender nodes

The IMUNES testbed had much less packet loss than the

Linux testbed and the CPU load successfully reached 100%.

From 2 we can see that at generation rate of 180 000 packets

per second (180 nodes at a rate of 1000pps) IMUNES had

only 10% loss while the Linux implementation reached 50%.

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180

C
P

U
 l
o

a
d

 (
%

)

Number of sender nodes

IMUNES
Linux

Fig. 3. CPU load with respect to the number of sender nodes

The IMUNES testbed in terms of CPU load had a linear

growth compared to the Linux testbed, which grew faster up

to until 60 nodes. This can be seen in Figure 3. Obviously

the IMUNES tesbed was more stable because the packet loss

was substantially smaller than in the Linux testbed.

The second test had a fixed number of 100 nodes and the

packet rate of 200 pps. The packet size was changed from 64

bytes to 1472 bytes because the MTU size was set to 1500

bytes (IP header is 20 bytes and the UDP header is 8 bytes).

The results can be seen in Figure 4 depicting the load of the

processor depending on the size of the packets generated. As

it can be seen, the Linux implementation varies significantly

in load while the IMUNES is much more stable.

As previously stated, the third test was run only on

IMUNES which was run on top of VMware. In Figure 5

results of this experiment are depicted so that for each packet

size, the maximum achieved packet rate without loss is shown.

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000 1200 1400

C
P

U
 l
o

a
d

 (
%

)

Packet size (bytes)

IMUNES
Linux

Fig. 4. Processor load with respect to packet size

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 50 100 150 200 250

P
a

c
k
e

t
ra

te
 (

p
p

s
)

Packet size (bytes)

64 bytes
512 bytes

1500 bytes

Fig. 5. Packet rate with respect to packet size

We measured for the packet sizes of 64, 512, and 1500 bytes

for 1, 10, 50, 100, 250 streams. It can be noted that the highest

packet rate without loss has been achieved for the packet size

of 64 bytes.

The tests showed that the IMUNES testbed is more stable

than the Linux one. Also, results regarding CPU use and

packet loss show that IMUNES is a better solution, which

additionally offers possibility of emulating complex network

scenarios.

7. CONCLUSION

In this paper we have presented improvements to our

architecture for user behaviour based traffic generation. Linux

containers, the previously used technology for virtualization

has been replaced with IMUNES. Both testbeds have been

tested in order to compare loads on the processor and packet

losses during traffic generation with a high number of packets

per second. The implementation with IMUNES showed better

results in both terms of lost packets and processor load.

Performance evaluation was done with high packet rates.

Shown results enable generation of MMORPG traffic on a

truly massive scale. For our future work we aim to add

expandability into the IMUNES prototype so multiple PCs

can participate in a single simulation.

ACKNOWLEDGMENTS

This work was supported by the research projects 036-

0362027-1639 and 036-0362027-1640, funded by the Min-

istry of Science, Education, and Sports of the Republic

of Croatia and the E-IMUNES project funded by Ericsson

Nikola Tesla, Zagreb, Croatia. Also, the research leading

to these results has received funding from the European

Community’s Seventh Framework Programme under grant

agreement no. 285939 (ACROSS).

REFERENCES

[1] Cisco Systems, “Cisco Visual Networking Index: Forecast and method-
ology, 2010-2015,” 2011.

[2] M. Suznjevic, I. Stupar, and M. Matijasevic, “A model and software
architecture for MMORPG traffic generation based on player behavior,”
Multimedia Systems, DOI: 10.1007/s00530-012-0269-x, 2012.

[3] M. Zec and M. Mikuc, “Real-time network IP network simulation at
gigabit data rates,” in Proceedings ConTEL 2003, pp. 235-242, 2003.

[4] M. Zec and M. Mikuc, “Operating system support for integrated
network emulation in IMUNES,” in 1st Workshop on Operating System

and Architectural Support for the on demand IT InfraStructure (OASIS),
pp. 3-12, 2004.

[5] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in Proceedings of the

ACM SIGMETRICS, pp. 151–160, 1998.
[6] P. E. Heegaard, “Gensyn - a Java based generator of synthetic Internet

traffic linking user behaviour models to real network protocols,” in
ITC Specialist Seminar on IP Traffic Measurement, Modeling and

Management, 2000.
[7] P. Svoboda, W. Karner, and M. Rupp, “Traffic analysis and modeling

for World of Warcraft,” in Communications, 2007. ICC ’07. IEEE

International Conference on, pp. 1612–1617, 2007.
[8] J. Kim, E. Hong, and J. Choi, “Measurement and Analysis of a Mas-

sively Multiplayer Online Role Playing Game Traffic,” in Proceedings

of Advanced Network Conference, pp. 1–8, 2003.
[9] H. Park, T. Kim, and S. Kim, “Network traffic analysis and modeling

for games,” in Internet and Network Economics, Lecture Notes in
Computer Science, pp. 1056–1065, Springer Berlin / Heidelberg, 2005.

[10] K. Shin, J. Kim, K. Sohn, C. J. Park, and S. Choi, “Transformation
Approach to Model Online Gaming Traffic,” ETRI Journal, vol. 33,
no. 2, pp. 219–229, 2011.

[11] K. Shin, J. Kim, K. Sohn, C. Park, and S. Choi, “Online gaming traffic
generator for reproducing gamer behavior,” in Proceedings of the 9th

international conference on Entertainment computing, pp. 160–170,
2010.

[12] J. Arenholz, C. Danilov, T.R. Henderson and J.H. Kim, “CORE: A
real-time network emulator,” in IEEE MILCOM, 2008.

[13] B. Lantz, B. Heller and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, 2010.
[14] M. Suznjevic, I. Stupar, and M. Matijasevic, “MMORPG player be-

havior model based on player action categories,” in Proceedings of the

10th Workshop on Network and System Support for Games, p. 6, 2011.
[15] M. Suznjevic, I. Stupar, and M. Matijasevic, “Traffic modeling of player

action categories in a MMORPG,” in Proceedings of the 2nd workshop

on DIstributed SImulation and Online gaming (DISIO), p. 8, 2011.
[16] M. Suznjevic, O. Dobrijevic, and M. Matijasevic, “MMORPG player

actions: Network performance, session patterns and latency require-
ments analysis,” Multimedia Tools and Applications, vol. 45, no. 1-3,
pp. 191–241, 2009.

[17] S. Avallone, S. Guadagno, D. Emma, A. Pescapé, and G. Venturi, “D-
ITG Distributed Internet Traffic Generator,” in Proceeding of Interna-

tional Conference on Quantitative Evaluation of Systems, pp. 316–317,
2004.

[18] A. Botta, A. Dainotti, and A. Pescapé, “Do you trust your software-
based traffic generator?,” Communications Magazine, IEEE, vol. 48,
no. 9, pp. 158 – 165, 2004.

[19] A. Botta, A. Dainotti, and A. Pescapè, “Multi-protocol and Multi-
platform Traffic Generation and Measurement,” in INFOCOM 2007,

26th IEEE International Conference on Computer Communications,

Demonstration Session, 2007.
[20] P.H. Kamp and R.N.M. Watson, “Jails: Confining the omnipotent root,”

in 2nd International SANE Conference, p. 15, 2000.
[21] A. Cobbs, “All about nethgraph.” http://people.freebsd.org/∼julian/

netgraph.html.
[22] J. Bonwick and B. Moore, “ZFS: The last word in filesystems.” http:

//hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome.
[23] M. Zec, M. Mikuc, A. Mijocevic, S. Marjanovic and V. Vasic, “Imunes

manual.” http://imunes.tel.fer.hr/imunes/dl/imunes ug 20110907.pdf.
[24] “Quagga project, quagga routing suite.” http://www.quagga.net.

