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Abstract—Have open-source network topology emulators out-
grown the realm of academic and educational playgrounds?
We tackle with that question by dissecting our experiences
with preproduction testing of functional blocks implemented in
commercial carrier-grade telco equipment, which we performed
in a testbed based on open-source tools. As the concepts and
mechanisms on which popular network emulation platforms
are based vary, so does their applicability to different problem
domains in telco product testing. Our survey of the existing
open-source tools reveals that the spectrum of their features and
limitations is multidimensional, with the choice of virtualization
techniques applied being crucial to the raw packet process-
ing throughput, topology size scaling, experiment instantiation
speeds, and the flexibility of integrating diverse tools in a single
testbed environment. We measured key performance metrics
for two conceptually similar emulation platforms (IMUNES and
CORE) running on different operating systems (FreeBSD and
Linux). Three testbed scenarios for commercial telecommunica-
tion products were described and analyzed.

Index Terms—Network emulation, Virtualization, Internet-
working, Software Routers

1. INTRODUCTION

The term “network emulation” usually refers to the ability
of a controllable, synthetic environment to efficiently interact
with real computer networks and traffic in real time. On the
other hand, network simulation systems are focused on mod-
eling various communication phenomena on either micro or
macro scale in entirely isolated synthetic environments which
have its own notion of (usually virtual) time. In many cases
such tools may be extended to permit interaction with real
networks, although typically subject to various restrictions,
significant overheads and thus reduced throughput compared
to their dedicated emulation counterparts.

There is also considerable ambiguity in literature on what
functionality is expected to be found in ”network emulation”
tools. The tools which emerged during 1990s [1] [2], some of
which are still actively maintained today such as [3], focused
on emulating properties of network links and queues, such
as propagation and queuing delays, bandwidth constraints,
packet loss etc. While such tools were categorized as “net-
work emulator”, they were capable of emulating only a single
network link (with multiple parallel queues). Advances in
various virtualization technologies applicable to commodity
hardware and operating systems [4] [5] [6] [7] from late
1990s and early 2000s paved the way for new tools which

permit complex network topologies to be emulated on a single
machine with various degrees of efficiency.

In this article we focus on network topology emulation
tools, particularly those based on open-source components,
and their application to testing of functional blocks in com-
mercial telecommunications equipment. Publications covering
application of open-source network testing tools in commer-
cial environments are in a surprisingly short supply, which
was our main motivation to document first-hand experiences
we gained in this area.

The rest of the article is organized as follows. In related
work section we present a brief overview of existing network
topology emulation tools. Section 3. provides an assessment
of key performance metrics for the emulation platform of our
choice and comparison with a similar counterpart running on
a different operating system. In section 4. we describe three
different testbed scenarios through which we illustrate and
discuss our choices of applied virtualization techniques and
test software design decisions. Our findings and directions for
future work are summarized in the concluding section.

2. RELATED WORK

A recent reasonably comprehensive and accurate survey
[8] provides an overview of the majority of contemporary
network emulation tools, so here we attempt only to briefly
summarize their main features and categorize them based on
the following criteria:

Communication overhead: As packets flow through an
emulated network it may be necessary to copy them from one
isolation context (representing a virtual node) to another, or
from the operating system (OS) kernel to userspace and vice
versa, depending on internal architecture of each tool. Copy-
ing packet payloads and switching execution context during
packet handoff can incur significant performance penalties
and introduce undesirable latencies and jitter. Copy operations
required to move a packet from one virtual node to another
are reported in the first column of Table I.

Node virtualization: The illusion of multiple independent
network nodes running on a single physical machine can
be accomplished via different virtualization methods, which
are outlined in second column of Table I. Full machine
virtualization platforms used by network emulators include
QEMU, VirtualBox or VMware, which provide the highest



Table I
OVERVIEW OF NETWORK EMULATION TOOLS

Tool
name

Communication
overhead

Node
virtualization

Filesystem
virtualization

Experiment
startup speed

Link
emulation

GUI

IMUNES [9] zero copy FreeBSD jails Layered
(unionfs)

Very fast
(pipelined)

Point-to-point Yes

CORE [10] 2 copies (Linux)
0 copy (FreeBSD)

LXC containers /
FreeBSD jails

None (shared
filesystem)

Fast
(sequential)

Multipoint
(WLAN)

Yes

Mininet [11] zero copy Network
namespaces

None (shared
filesystem)

Fast
(sequential)

Point-to-point No

MLN [12] two copies Full virtualization /
Paravirtualization

Independent
or COW disk
images

VMs’ boot and
shutdown time

None No

Marionnet [13] two copies Paravirtualization Independent
or COW disk
images

VMs’ boot and
shutdown time

Point-to-point Yes

Cloonix [14]

Virtualsquare [15]
two copies Full virtualization /

Paravirtualization
Independent
disk images

VMs’ boot and
shutdown time

Point-to-point Yes

Netkit [16] two copies Full virtualization Independent
or COW disk
images

VMs’ boot and
shutdown time

None No

GNS3 [17]

VNX [18]
two copies Full virtualization Independent

disk images
VMs’ boot and
shutdown time

None Yes

degree of isolation between virtual nodes but at a high
I/O performance cost and a significant memory footprint,
which combined limit the scalability to only a handful of
virtual nodes on a single physical machine. Paravirtualization
platforms such as Xen [4], KVM or UML which attempt
to amortize some of the high I/O virtualization costs are
also employed by certain network emulation tools. Other
emulation tools leverage OS compartmentalization techniques
such as FreeBSD jails, LXC containers or OpenVZ, combined
with network stack virtualization [7] or network namespaces,
which provide an illusion of multiple isolated execution
environments with private networking state on a single OS
image with negligible packet I/O overhead.

Filesystem virtualization: Network emulation tools rely-
ing on both full system virtualization and paravirtualization
typically require independent filesystem images for each vir-
tual node. This significantly contributes to their high memory
footprint and I/O overhead associated with running processes
in each emulated node, where only I/O overhead may be
moderately reduced by using a single ”master” disk image
combined with copy-on-write images for each emulated node.
Emulation tools which leverage OS compartmentalization
techniques may more economically virtualize file access by
using copy-on-write filesystems such as ZFS, or by using
layered filesystems such as UNIONFS [19] which effectively
emulate copy-on-write semantics but with further reductions

in memory footprint for typical network-centric workloads.
Finally, in an attempt to minimize the memory footprint
of each virtual node, some emulation tools do not provide
any means for filesystem virtualization, which requires many
applications to be modified to run properly in multiple in-
stances, while opening a wide vector for interference between
processes running in separated virtual nodes.

Startup speed: Tools which leverage containers / jails in-
stantiate emulated network topologies quickly (several nodes
per second), while paravirtualized virtual machines take
longer to start, and for fully virtualized nodes instantiation
delays can stretch to minutes per node. Those delays depend
on the guest OS running in a virtual node, as well as
on the total number of nodes in an experiment. Pipelined
instantiation of virtual nodes, which spreads node startup and
initial configuration tasks on multiple CPU cores, improves
experiment startup delays compared to tools which (unneces-
sarily) strictly serialize node instantiation.

Link emulation: The last column indicates whether a tool
is capable of emulating link impairments such as bit-error-
rate (BER), delay, bandwidth etc. Feature sets and scalability
of impairments emulation vary between tools, but in general
their accuracy (timing resolution) and jitter is influenced
by the system load and OS scheduler behavior, which in
real-world workloads limit the precision to around 1 ms
range. Among all the reviewed tools only CORE provides a



dedicated module for emulating multi-point wireless media.
GUI: a graphical user interface simplifies topology speci-

fication and manipulation, thus lowers the entry barrier for
users not trained in UNIX system administration, which
comes handy especially in educational applications.

3. PERFORMANCE CONSIDERATIONS

Driven by the requirement for supporting experiments with
moderately high packet rates (around 100.000 packets / sec-
ond with zero packet loss), our choice of emulation platforms
was narrowed down to those leveraging OS compartmental-
ization techniques which allow for packets to traverse virtual
network topologies with minimum overhead. Our decision to
use FreeBSD as the base OS with IMUNES as the experiment
control and management plane was initially driven primarily
by previous in-house experiences and developer availability,
though the advantages of the BSD licensing model also
become apparent early in the platform adoption process as the
team was relieved from legal burdens when developing and
exchanging kernel patches and extensions without releasing
them to the outside world, which would otherwise require
following rigorous and exhausting approval processes. Later
on, as more testing teams got involved in the project, the
ability to quickly instantiate and restart experiments was
identified as important (though not critical), so we decided
to include the related benchmarks in this section.
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Figure 1. IPv4 traffic forwarding throughput for IMUNES (FreeBSD) and
CORE (Linux). IPv4 fast forwarding option was enabled on FreeBSD, while
reverse-path filtering was disabled on Linux in order to reduce the number
of IPv4 lookups per packet.

As our main concern was emulation platform’s packet
forwarding capacity, in the first synthetic test we measured
loss-free forwarding rate of our reference machine (Intel
Xeon E5-1650 CPU, 6 cores at 3.20 GHz, 8 GB of RAM)
while varying the length of a chain of virtual routers through
which externally generated traffic was injected. We used
FreeBSD 9.3-RELEASE (amd64) as the base OS throughout
the tests. For comparison we included throughput figures of
running identical tests on Linux (Ubuntu 14) using CORE

as the emulation control plane. Traffic was generated and
measured using netmap-based tools [3] running on an external
machine, which was connected to the emulation server via
a dual-port Intel X520-SR2 10G Ethernet interface card.
The results are shown in figure 1. The aggregate throughput
(packet rate times number of hops traversed) of FreeBSD-
based setup peaks just above 2 million packets per second
for a router chain with eight nodes, while Linux / CORE
results are considerably lower, which can be attributed to
the fact that CORE uses a user-space daemon for emulating
link-level impairments, while with FreeBSD / IMUNES the
entire forwarding path is contained inside the kernel, hence
packet copy operations are avoided. Moreover, we observed
that packet forwarding load on FreeBSD (mainly netgraph
[20] worker threads) was reasonably well balanced between
available CPU cores, while on Linux / CORE a single user-
level thread responsible for emulating link-level impairments
stood out as an apparent performance bottleneck, which indi-
cates that with careful datapath rearchitecting the performance
gap between Linux / CORE and FreeBSD could be reduced.
We also detected that at higher traffic rates the Linux / CORE
setup could not forward traffic with zero packet loss, while
such a problem could not be observed on FreeBSD. Once
overloaded with inbound traffic, the forwarding throughput of
both FreeBSD and Linux / CORE would collapse, although
operating systems would not livelock, i.e. they both remained
controllable and reachable via a separate network interface.
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Figure 2. Memory footprint as a function of experiment size in IMUNES.
”Raw” nodes are empty containers with no user-level processes running.
”Router” nodes run quagga routing daemon and actively exchange IPv4 and
IPv6 routes via RIP.

Figure 2 shows that baseline memory usage in IMUNES is
fairly small, around 600 KB per instantiated virtual node with
no running processes, and around 3500 KB when running
quagga routing daemons. This permits sizable experiment
topologies to modelled, even with each virtual node having
a private copy-on-write (COW) view of filesystem hierarchy
(unlike in CORE or Mininet).

On our test machine IMUNES was capable of instantiating
between 7 and 30 virtual nodes per second, depending on
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Figure 3. The impact of experiment size on startup and termination duration
in IMUNES / FreeBSD. ”Raw” nodes are empty containers with no user-level
processes running. ”Router” nodes run quagga routing daemon and actively
exchange IPv4 and IPv6 routes via RIP.

experiment size and type of the workload. Experiment termi-
nation speed is in the same range, as shown in figure 3. The
obtained performance levels are between 4 and 8 times faster
than with CORE / Linux using identical topologies on the
same test machine, which comes somewhat surprising given
that both emulation platforms utilize similar OS virtualiza-
tion techniques, and given that IMUNES has an additional
overhead of creating a private COW filesystem environment
for each virtual node, while CORE does not. We attribute the
difference in experiment instantiation speed to the fact that
IMUNES attempts to spread the load of virtual node creation
to multiple threads, while the corresponding tasks in CORE
are serialized.

4. USE CASES

In this section we present three testbed scenarios that were
intensively used in Ericsson Nikola Tesla to test the Cello
Packet Platform (CPP) [21] based products, which illustrate
the feasibility of replacing complex and expensive physical
testbeds with a network emulator.

Emulation enables replacing real hardware, e.g. routers,
switches and hosts. This greatly simplifies and speeds up
testbed setup and configuration because there is no need to
manually configure and connect a large amount of different
physical equipment. The setup is lightweight and portable,
thus it can be easily relocated to another testing site. Therefore
both the testing equipment and variable expenses are reduced.
This decreases the total cost of the product and makes it more
competitive in the market.

4.1 IPsec peers testbed

In this testbed, it was necessary to simultaneously support
25 different IPsec gateways (Internet Key Exchange [22]
peers) connected to Ericssons CPP products as shown in
Figure 4. The following was needed for the testbed:

Figure 4. IPsec peers testbed

• 25 different IPsec gateways. One of the gateways is used
for communication between two CPP nodes.

• 24 hosts with different IP addresses, each connected to
its own IPsec gateway.

• 1 router.
• 1 switch.

To carry out this testbed using real hardware, one or more
physical IPsec gateways with 25 different ports (IP addresses)
and one or more physical hosts with 24 different ports were
needed. All of this was run in a single IMUNES experiment
because all nodes have a different instance of the network
stack [7] and an independent execution environments [6].

This experiment contains three different types of emulated
nodes. The switch is a netgraph [20] node that does packet
switching in the kernel. Host (raw) nodes are persistent jails
without any running applications with a separate interface and
network stack. Router node is a persistent jail (same as a host)
which is running a Quagga [23] routing daemon and supports
RIP, RIPng, OSPFv2 and OSPFv3. IPsec gateway nodes are
routers that are running the Strongswan IPsec utilities [24]
that provide all required functionalities needed for the testbed.
Physical network interface cards (NIC) can be assigned to
nodes in the emulated environment and connect emulated
topologies with real-world equipment.

The average startup and termination times for this testbed
are respectively 1.7 seconds and 2.9 seconds. The average
amount of memory needed for this testbed is 88 MB.

4.2 IPv6-to-IPv4 translation testbed

In testbed shown in Figure 5, various combinations of
IPv6 / IPv4 network configurations were tested. This scenario
needed the following:

• Virtual LAN (VLAN) termination support on at least 2
links for both the data and control planes.

• Generic Tunnel Interface (GIF) termination for the data
plane (mobile call communication data) for at least 10
different IP addresses - around 100 Mbit/s in total.

• IPv6-to-IPv4 translation support for control plane data
(handles call establishment and termination) - 7 Mbit/s
of SCTP data running through NAT64.



Figure 5. IPv6-to-IPv4 translation testbed

This testbed, deployed using real hardware, would require
a router for GIF tunnel termination, 2 switches for VLAN
termination and a router for IPv6-to-IPv4 translation. Besides
that, it was necessary to run three of these experiments
at the same time which would require three times more
equipment, but that was easily emulated on a single machine
because IMUNES has integrated support for running multiple
experiments at once.

Emulated topologies can be complemented by scripts that
simplify topology configuration and deployment. A dedicated
set of tools is included in the standard distribution that enables
node and link manipulation. VLAN and GIF termination
was done on emulated router nodes which were modified
by a single external script that configured VLAN and GIF
interfaces. The NAT64 node is an extended router node
that automatically configures Tayga [25], a NAT64 userspace
implementation for Linux, according to the configuration
specified in the GUI.

The average startup and termination times for this testbed
are around 1.0 second, while the average memory footprint
is 22 MB.

4.3 IPsec testbed

The IPsec testbed is shown in Figure 6. It was used to test
CPP products (DUS41 Client and Server). The requirements
for the test environment were as follows:

• IPsec gateways that encapsulate IPv6 client payloads in
an IPv4 IPsec tunnel.

• DHCP servers that assign DHCP addresses to newly
connected clients.

• NAT daemons that translate traffic that is communicated
between nodes and IPsec security gateways.

• Management tool to connect and manage the device
under test (DUT).

The minimum hardware requirements for this testbed
would be 1 IPsec gateway, 1 router with NAT and DHCP
support, 1 DUT management node and 2 switches.

For this testbed, additional tools were integrated into virtual
nodes (illustrated in Figure 6). Host nodes were extended by
adding an ISC DHCP server [26] to provide address assign-
ment (unmodified FreeBSD binaries can run virtual nodes).

Figure 6. IPsec testbed

Router nodes were configured to run FreeBSD NAT daemons
in combination with IPFW firewall support. IPsec gateways
were the same as in the first testbed. Finally, the Management
tool node was configured to run custom management software
to avoid the addition of another physical machine to the
testbed. The management tool usually runs on Linux and was
integrated into the emulated router node (running in the IPv4
part of the network).

The average startup and termination times for this testbed
are around 0.7 seconds, whereas the memory footprint is
around 42 MB.

5. CONCLUSION

The described experiences with using open-source soft-
ware for constructing network testbeds have shown that such
tools offer excellent flexibility for adapting to very specific
requirements of various test scenarios, provided that the tools
are not pushed beyond their known limitations, with packets
per second throughput being the most obvious obstacle. The
ability to efficiently run multiple experiments in parallel on a
single emulation server turned out to be pivotal for supporting
multiple testing teams working simultaneously on different
problem sets. The choice of OS compartmentalization, as
currently the most efficient way of multiplexing many virtual
nodes on a single physical machine, have proved sufficient
for our test scenarios, some of which required loss-free
throughputs in excess of 100.000 packets per second. As it
is unrealistic to expect that packet per second throughputs of
standard data planes in commodity operating systems are go-
ing to significantly improve in the foreseeable future, we are
exploring new approaches for supporting applications which
will require orders of magnitude higher throughputs (10G and
40G Ethernet). New software abstractions for efficient packet
handoff such as netmap [3] offer the throughput headroom,
but require packet processing datapaths to be constructed from
scratch, which calls for long-term development efforts without
inherent guarantees for success.
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